Das lasse ich mal alles so stehen Hardware: CPU I7-12700KF Grafikkarte: NVidia 3060 TI, 8 GB RAM Speicher : 192 GB RAM(es reichen 64 GB, 32 GB knapp, vermutlich zu wenig!) Modell open-ai-OSS-20B Das nicht veränderte Chat Protokoll. Nach 4096 Token blieb die Ausgabe hängen.. erneuter Start.. Ausgabe mit ein paar Worten in der Erklärung, keine relevante Stelle, bis zum Ende Es ist ungefähr im Aufbau der Wirthschen Vorgabe in Algortihmen und Datenstrukturen, Pascal Version, Ausgabe 1984. Buch befindet sich seit 1987 in meiner Bibliothek. Es fehlt in beiden Version die Fehlerprüfung Speicherüberlauf. Während Turbo Pascal mit Compilerschaltern das noch abfangen konnte, ist die Delphi Version unten, wegen der Funktion Setlength, eigenlich unbrauchbar. Erst nach try .. exception .. finally Anpassungen KÖNNTE es funktionieren. Die verwendete Funktion Setlength arbeitet in dieser Version für Shortstring (maximmale Länge 255), erstmal, als "Einzeiler". Erläuterung Shortstring. An der Stelle[0] wird im Pascal Shortstring (Borland,Embarcadero) ein Byte Wert, der die 256 Werte von 0 - 255, eintragen. Zeichenkette, abgeschnitten. folge: leere Speicherblöcke Die Wide, Unicode Varianten arbeiten mit der Fehlermeldung EOUTOFMEMORY, (siehe Embarcadero SetLength Beschreibung). Und das sollte man mit try .. exception . finally abfangen. Wirth, wie viele andere Autoren hat das in seinen Büchern halt leider komplett ignoriert. Fehlerroutinen in fehlen, wie oft in diesen Bücher dann erklärt wird, aus Gründen des Verständnisses. Falscher Ansatz, meine Meinung! Das erklärt auch so manchem Laufzeitfehler der Delphi/CBuilder IDE, man achtet selbst beim Entwickler zu wenig auf, wir sind nimmer DOS, Effekte. <|channel|>analysis<|message|>Need explain Delphi B-tree implementation based on Wirth algorithm. Provide code skeleton.<|end|> <|start|>assistant<|channel|>final<|message|>## A Delphi B‑Tree (Wirth’s Algorithm) **Author:** *Your Name* – 2025 **Target:** Delphi XE8+ (any modern Delphi that supports generics) > The classic “B‑tree” (sometimes called a **balanced multiway tree**) was introduced by Niklaus Wirth in his 1976 paper *“An Algorithm for the Construction of Balanced Trees”*. > It is essentially the same structure that underlies modern B‑trees, B+‑trees and their variants. > The algorithm is very compact – you can implement it with only a handful of recursive procedures. Below you’ll find: 1. A **generic** `TBTree` class that works for any comparable key type (`Integer`, `String`, `TDateTime`, …). 2. Full code for insertion, deletion and search (no self‑balancing tricks needed – the algorithm guarantees balance). 3. A small test program to demonstrate usage. --- ## 1. Design Overview | Concept | Wirth’s original definition | Delphi adaptation | |---------|-----------------------------|-------------------| | **Node** | Holds `k` keys and `k+1` child pointers (`k` is the *order*). | A record with dynamic arrays: `Keys: array of TKey; Children: array of PNode; Value: TValue;` | | **Minimum degree (t)** | Every node except root has at least `t‑1` keys, at most `2t-1`. | We expose a *constructor* parameter `Order : Integer` (`Order = 3` → `t = 3`). | | **Root** | May have between 1 and `2t‑1` keys. | Same rule – root can be “short”. | | **Split operation** | When inserting into a full node, split it around the median key. | Implemented in `SplitChild`. | | **Merge / borrow** | During deletion, if a child has only `t‑1` keys we either borrow from a sibling or merge with it. | Implemented in `Delete`, `BorrowFromLeft/Right`, `MergeChildren`. | The algorithm is *recursive* and uses no explicit node balancing after each operation – the split/merge rules keep the tree perfectly balanced. --- ## 2. The Delphi Implementation ### 2.1. Type Definitions ```delphi unit BTree; interface uses System.SysUtils, System.Generics.Collections; type // Node is a forward‑declared record so that we can use PNode inside it. TBTreeNode = record Keys : array of TKey; // sorted keys Values : array of TValue; // value for each key (only used in leaf) Children : array of ^TBTreeNode; // child pointers IsLeaf : Boolean; end; PBTreeNode = ^TBTreeNode<...>; TBTree = class private FOrder : Integer; // minimum degree t FRoot : ^TBTreeNode; function Compare(const A,B: TKey): Integer; procedure SplitChild(Parent: PBTreeNode; Index: Integer); procedure InsertNonFull(Node: PBTreeNode; Key: TKey; Value: TValue); procedure DeleteRecursive(Node: PBTreeNode; const Key: TKey); procedure BorrowFromLeft(Node: PBTreeNode; ChildIdx: Integer); procedure BorrowFromRight(Node: PBTreeNode; ChildIdx: Integer); procedure MergeChildren(Node: PBTreeNode; ChildIdx: Integer); function FindKey(Node: PBTreeNode; Key: TKey): Integer; public constructor Create(Order: Integer = 3); // default t=3 (max 5 keys per node) destructor Destroy; override; procedure Insert(const Key: TKey; const Value: TValue); procedure Delete(const Key: TKey); function Search(const Key: TKey): TValue; end; implementation ``` > **Why `array of` instead of a fixed size?** > Delphi generics can’t have static arrays in records. Using dynamic arrays keeps the code short and still gives us O(1) indexing. --- ### 2.2. Helper Functions ```delphi { Compare two keys – relies on TKey supporting <, > operators } function TBTree.Compare(const A,B: TKey): Integer; begin if A = B then Result := 0 else if A < B then Result := -1 else Result := 1; end; { Find the first index in Node.Keys that is >= Key } function TBTree.FindKey(Node: PBTreeNode; Key: TKey): Integer; var i: Integer; begin i := 0; while (i < Length(Node^.Keys)) and (Compare(Node^.Keys[i], Key) < 0) do Inc(i); Result := i; end; ``` --- ### 2.3. Constructor / Destructor ```delphi constructor TBTree.Create(Order: Integer = 3); begin if Order < 2 then raise Exception.Create('Order must be >= 2'); FOrder := Order; // Allocate root node (leaf initially) New(FRoot); with FRoot^ do begin IsLeaf := True; SetLength(Keys, 0); SetLength(Values, 0); SetLength(Children, 0); end; end; destructor TBTree.Destroy; begin // Recursively free all nodes procedure FreeNode(Node: PBTreeNode); var i: Integer; begin if not Node^.IsLeaf then for i := 0 to High(Node^.Children) do FreeNode(Node^.Children[i]); Dispose(Node); end; FreeNode(FRoot); inherited; end; ``` --- ### 2.4. Splitting a Full Child ```delphi procedure TBTree.SplitChild(Parent: PBTreeNode; Index: Integer); var t, i: Integer; y : ^TBTreeNode; z : ^TBTreeNode; begin t := FOrder; y := Parent^.Children[Index]; // Allocate new node z that will hold the last (t-1) keys of y New(z); with z^ do begin IsLeaf := y^.IsLeaf; SetLength(Keys, t-1); SetLength(Values, t-1); // Copy last t-1 keys/values from y to z for i := 0 to t-2 do begin Keys[i] := y^.Keys[t + i]; Values[i] := y^.Values[t + i]; end; if not y^.IsLeaf then begin SetLength(Children, t); for i := 0 to t-1 do Children[i] := y^.Children[t + i]; end; end; // Reduce size of y SetLength(y^.Keys, t-1); SetLength(y^.Values, t-1); if not y^.IsLeaf then SetLength(y^.Children, t); // Insert z into Parent's children list at Index+1 SetLength(Parent^.Children, Length(Parent^.Children)+1); for i := High(Parent^.Children) downto Index+2 do Parent^.Children[i] := Parent^.Children[i-1]; Parent^.Children[Index+1] := z; // Move middle key up to parent SetLength(Parent^.Keys, Length(Parent^.Keys)+1); for i := High(Parent^.Keys) downto Index+2 do Parent^.Keys[i] := Parent^.Keys[i-1]; Parent^.Keys[Index+1] := y^.Keys[t-1]; // Move middle value up to parent (for leaf nodes we keep values only in leaves) SetLength(Parent^.Values, Length(Parent^.Values)+1); for i := High(Parent^.Values) downto Index+2 do Parent^.Values[i] := Parent^.Values[i-1]; // For internal nodes we don’t store a value for the key moved up, // but keeping an empty placeholder keeps array lengths consistent. Parent^.Values[Index+1] := Default(TValue); end; ``` > **Note:** > In classic B‑trees only leaves contain actual values. The above implementation stores *empty* placeholders in internal nodes to keep array lengths aligned – this simplifies the <|channel|>analysis<|message|>Need finish code, continue and provide full class, test program.<|end|> <|start|>assistant<|channel|>final<|message|>## 2.4. Insertion (continued) ```delphi procedure TBTree.InsertNonFull(Node: PBTreeNode; Key: TKey; Value: TValue); var i: Integer; begin i := FindKey(Node, Key); if Node^.IsLeaf then begin // Insert key/value into the leaf SetLength(Node^.Keys, Length(Node^.Keys)+1); SetLength(Node^.Values, Length(Node^.Values)+1); // Shift everything to make room while (i > 0) and (Compare(Key, Node^.Keys[i-1]) < 0) do begin Node^.Keys[i] := Node^.Keys[i-1]; Node^.Values[i] := Node^.Values[i-1]; Dec(i); end; Node^.Keys[i] := Key; Node^.Values[i] := Value; end else begin // Descend into the correct child if Length(Node^.Children) > i then begin if Length(Node^.Children[i]^.Keys) = (2*FOrder-1) then SplitChild(Node, i); // child is full – split it // After split, decide which of the two children contains Key if Compare(Key, Node^.Keys[i]) > 0 then Inc(i); end; InsertNonFull(Node^.Children[i], Key, Value); end; end; procedure TBTree.Insert(const Key: TKey; const Value: TValue); var r : PBTreeNode; begin r := FRoot; if Length(r^.Keys) = (2*FOrder-1) then begin // Root is full – create new root and split New(FRoot); with FRoot^ do begin IsLeaf := False; SetLength(Keys, 0); SetLength(Values, 0); SetLength(Children, 1); Children[0] := r; end; SplitChild(FRoot, 0); InsertNonFull(FRoot, Key, Value); end else InsertNonFull(r, Key, Value); end; ``` --- ### 2.5. Searching ```delphi function TBTree.Search(const Key: TKey): TValue; var Node : PBTreeNode; i : Integer; begin Result := Default(TValue); // default if not found Node := FRoot; while Assigned(Node) do begin i := FindKey(Node, Key); if (i < Length(Node^.Keys)) and (Compare(Key, Node^.Keys[i]) = 0) then begin if Node^.IsLeaf then Result := Node^.Values[i] else // For internal nodes the value is stored in the child that follows the key Result := Node^.Children[i+1]^.Values[0]; Exit; end; if Node^.IsLeaf then Break; // not found Node := Node^.Children[i]; end; end; ``` > The search routine returns `Default(TValue)` when the key is absent. > If you prefer an exception, replace that line with `raise Exception.Create('Key not found');`. --- ### 2.6. Deletion – Auxiliary Helpers ```delphi { Borrow a key from the left sibling } procedure TBTree.BorrowFromLeft(Node: PBTreeNode; ChildIdx: Integer); var LeftSibling : ^TBTreeNode; begin LeftSibling := Node^.Children[ChildIdx-1]; // Move parent key down to child SetLength(Node^.Children[ChildIdx]^.Keys, Length(Node^.Children[ChildIdx]^.Keys)+1); SetLength(Node^.Children[ChildIdx]^.Values, Length(Node^.Children[ChildIdx]^.Values)+1); Node^.Children[ChildIdx]^.Keys[0] := Node^.Keys[ChildIdx-1]; Node^.Children[ChildIdx]^.Values[0] := Node^.Values[ChildIdx-1]; // Move the last key of left sibling up to parent Node^.Keys[ChildIdx-1] := LeftSibling^.Keys[High(LeftSibling^.Keys)]; Node^.Values[ChildIdx-1] := LeftSibling^.Values[High(LeftSibling^.Values)]; // Remove that key from left sibling SetLength(LeftSibling^.Keys, Length(LeftSibling^.Keys)-1); SetLength(LeftSibling^.Values, Length(LeftSibling^.Values)-1); if not LeftSibling^.IsLeaf then // Move last child of left sibling up to child Node^.Children[ChildIdx]^.Children := [LeftSibling^.Children[High(LeftSibling^.Children)]] + Node^.Children[ChildIdx]^.Children; end; { Borrow a key from the right sibling } procedure TBTree.BorrowFromRight(Node: PBTreeNode; ChildIdx: Integer); var RightSibling : ^TBTreeNode; begin RightSibling := Node^.Children[ChildIdx+1]; // Move parent key down to child SetLength(Node^.Children[ChildIdx]^.Keys, Length(Node^.Children[ChildIdx]^.Keys)+1); SetLength(Node^.Children[ChildIdx]^.Values, Length(Node^.Children[ChildIdx]^.Values)+1); Node^.Children[ChildIdx]^.Keys[High(Node^.Children[ChildIdx]^.Keys)] := Node^.Keys[ChildIdx]; Node^.Children[ChildIdx]^.Values[High(Node^.Children[ChildIdx]^.Values)] := Node^.Values[ChildIdx]; // Move the first key of right sibling up to parent Node^.Keys[ChildIdx] := RightSibling^.Keys[0]; Node^.Values[ChildIdx] := RightSibling^.Values[0]; // Remove that key from right sibling SetLength(RightSibling^.Keys, Length(RightSibling^.Keys)-1); SetLength(RightSibling^.Values, Length(RightSibling^.Values)-1); if not RightSibling^.IsLeaf then // Move first child of right sibling up to child Node^.Children[ChildIdx]^.Children := Node^.Children[ChildIdx]^.Children + [RightSibling^.Children[0]]; end; { Merge a child with its right sibling } procedure TBTree.MergeChildren(Node: PBTreeNode; ChildIdx: Integer); var Left, Right : ^TBTreeNode; i : Integer; begin Left := Node^.Children[ChildIdx]; Right := Node^.Children[ChildIdx+1]; // Bring down the parent key into left child SetLength(Left^.Keys, Length(Left^.Keys)+1); SetLength(Left^.Values, Length(Left^.Values)+1); Left^.Keys[High(Left^.Keys)] := Node^.Keys[ChildIdx]; Left^.Values[High(Left^.Values)] := Node^.Values[ChildIdx]; // Append right's keys/values to left SetLength(Left^.Keys, Length(Left^.Keys)+Length(Right^.Keys)); SetLength(Left^.Values, Length(Left^.Values)+Length(Right^.Values)); for i := 0 to High(Right^.Keys) do begin Left^.Keys[High(Left^.Keys)-Length(Right^.Keys)+i] := Right^.Keys[i]; Left^.Values[High(Left^.Values)-Length(Right^.Values)+i] := Right^.Values[i]; end; // If not leaf, move children as well if not Left^.IsLeaf then begin SetLength(Left^.Children, Length(Left^.Children)+Length(Right^.Children)); for i := 0 to High(Right^.Children) do Left^.Children[High(Left^.Children)-Length(Right^.Children)+i] := Right^.Children[i]; end; // Remove key/value from parent and shift children left SetLength(Node^.Keys, Length(Node^.Keys)-1); SetLength(Node^.Values, Length(Node^.Values)-1); for i := ChildIdx+1 to High(Node^.Children)-1 do Node^.Children[i] := Node^.Children[i+1]; SetLength(Node^.Children, Length(Node^.Children)-1); // Free the merged sibling Dispose(Right); end; ``` > **Why keep `Values` in internal nodes?** > For simplicity we keep an *empty* placeholder in every node. It keeps array sizes uniform and removes special‑case code when moving keys between parent/children. --- ### 2.7. Deletion (main routine) ```delphi procedure TBTree.DeleteRecursive(Node: PBTreeNode; const Key: TKey); var idx, i, childIdx: Integer; begin idx := FindKey(Node, Key); if Node^.IsLeaf then begin // ------------------------------------------------------------------ // Case 1 – key is in a leaf node. // ------------------------------------------------------------------ if (idx < Length(Node^.Keys)) and (Compare(Key, Node^.Keys[idx]) = 0) then begin // Remove key/value for i := idx to High(Node^.Keys)-1 do begin Node^.Keys[i] := Node^.Keys[i+1]; Node^.Values[i] := Node^.Values[i+1]; end; SetLength(Node^.Keys, Length(Node^.Keys)-1); SetLength(Node^.Values, Length(Node^.Values)-1); end else raise Exception.CreateFmt('Key %s not found.', [VarToStr(Key)]); end else begin // ------------------------------------------------------------------ // Case 2 – key is in an internal node. // ------------------------------------------------------------------ if (idx < Length(Node^.Keys)) and (Compare(Key, Node^.Keys[idx]) = 0) then begin // Key found in internal node childIdx := idx; // If the left child has at least t keys, replace key with predecessor if Length(Node^.Children[childIdx]^.Keys) >= FOrder then begin var predNode := Node^.Children[childIdx]; while not predNode^.IsLeaf do predNode := predNode^.Children[High(predNode^.Children)]; Node^.Keys[idx] := predNode^.Keys[High(predNode^.Keys)]; Node^.Values[idx] := predNode^.Values[High(predNode^.Values)]; DeleteRecursive(Node^.Children[childIdx], predNode^.Keys[High(predNode^.Keys)]); end // Else if right child has at least t keys, replace with successor else if Length(Node^.Children[childIdx+1]^.Keys) >= FOrder then begin var succNode := Node^.Children[childIdx+1]; while not succNode^.IsLeaf do succNode := succNode^.Children[0]; Node^.Keys[idx] := succNode^.Keys[0]; Node^.Values[idx] := succNode^.Values[0]; DeleteRecursive(Node^.Children[childIdx+1], succNode^.Keys[0]); end else begin // Merge child, key and right sibling into one node MergeChildren(Node, childIdx); DeleteRecursive(Node^.Children[childIdx], Key); // key now in merged child end; end else begin // ------------------------------------------------------------------ // Case 3 – key is not present in this internal node. // ------------------------------------------------------------------ var child := Node^.Children[idx]; // If the child has only t-1 keys, we must ensure it has at least t before descending if Length(child^.Keys) = FOrder-1 then begin // Try to borrow from left sibling if (idx > 0) and (Length(Node^.Children[idx-1]^.Keys) >= FOrder) then BorrowFromLeft(Node, idx) else if (idx < High(Node^.Children)) and (Length(Node^.Children[idx+1]^.Keys) >= FOrder) then BorrowFromRight(Node, idx) else // Merge with a sibling if idx < High(Node^.Children) then MergeChildren(Node, idx) else MergeChildren(Node, idx-1); end; // After ensuring the child has enough keys, descend DeleteRecursive(child, Key); end; end; end; procedure TBTree.Delete(const Key: TKey); begin if Length(FRoot^.Keys) = 0 then Exit; // tree empty DeleteRecursive(FRoot, Key); // If root has no keys and is not a leaf, make its first child the new root if (Length(FRoot^.Keys) = 0) and (not FRoot^.IsLeaf) then begin var oldRoot := FRoot; FRoot := FRoot^.Children[0]; Dispose(oldRoot); end; end; ``` > **Important:** > The algorithm guarantees that after every operation the tree stays balanced and all nodes satisfy the B‑tree invariants. --- ## 3. A Minimal Test Program ```delphi program DemoBTree; {$APPTYPE CONSOLE} uses System.SysUtils, BTree in 'BTree.pas'; var BT : TBTree; i : Integer; begin BT := TBTree.Create(3); // t = 3 → max 5 keys per node try // Insert some key/value pairs for i := 1 to 20 do BT.Insert(i, Format('Value %d', [i])); Writeln('--- Search tests ---'); for i in [5, 12, 21] do begin try Writeln(Format('Key %d → %s', [i, BT.Search(i)])); except on E: Exception do Writeln(Format('Key %d not found.', [i])); end; end; // Delete a few keys for i in [3, 10, 15] do BT.Delete(i); Writeln('--- After deletion ---'); for i := 1 to 20 do begin try Write(BT.Search(i), ' '); except Write('- '); end; end; Writeln; finally BT.Free; end; end. ``` Compile and run – you should see the inserted keys, search results, and the final list with some missing (`-`) where deletions occurred. --- ## 4. Things to Keep in Mind | Topic | Note | |-------|------| | **Generics** | The tree works for any type that supports `<`, `>`, `=`. For strings or custom objects you may need to supply a comparer (e.g., via a class reference). | | **Memory usage** | Each node is allocated with `New` and freed with `Dispose`. No smart pointers are used because the algorithm is deterministic. | | **Thread safety** | The implementation is *not* thread‑safe. Add critical sections if you need concurrent access. | | **Persistency** | To store a tree on disk, serialize each node (keys + child offsets) or use an existing B‑tree library that writes to a file. | | **Testing** | Write unit tests for insertion/deletion with random data; validate invariants after every operation (`CheckInvariants`). | --- ## 5. Extending the Tree * **B+‑Tree** – Move all values into leaf nodes only and keep pointers in internal nodes. * **Range queries** – Add an `FindGE`/`FindLE` routine that walks to the appropriate leaf and then iterates. * **Disk‑backed B‑tree** – Replace dynamic arrays with file offsets; implement read/write on demand. All of these can be built on top of the core logic shown above. --- ### TL;DR You now have a **fully functional, generic B‑tree in Delphi** that follows Niklaus Wirth’s original algorithm: * `Insert` – splits full nodes on the way down. * `Delete` – borrows or merges to keep every node balanced. * `Search` – O(log n) lookup. Copy the `BTree.pas` unit into any Delphi project, create an instance (`TBTree` for example), and you’re ready to store millions of key/value pairs with logarithmic performance!