create a chatbot for a website 1. flask Python Web Framework Dokumentation https://flask.palletsprojects.com/en/stable/ Beispiel, Quickstart https://flask.palletsprojects.com/en/stable/quickstart/ CPU I7-12700KF GPU Nvidia 3600 TI RAM 192 GB Modell CGT-OSS-20B <|channel|>analysis<|message|>Need produce outline of building web chatbot: front-end (HTML/JS), back-end API using e.g., Python Flask + OpenAI. Provide code snippets.<|end|> <|start|>assistant<|channel|>final<|message|>Below is a **ready‑to‑run, production‑grade template** that turns any static website into an interactive chatbot powered by GPT‑4 (or any LLM you choose). It consists of: | Layer | What it does | |-------|--------------| | **Front‑end** | A single `index.html` + vanilla JS that shows a chat window, sends the user’s text to the back‑end, and displays responses. | | **Back‑end** | A tiny Flask API (`app.py`) that receives JSON payloads, forwards them to the LLM (OpenAI or any other provider), and streams the answer back to the browser using Server‑Sent Events (SSE). | | **Deployment** | Dockerfile + `docker-compose.yml` so you can run everything locally or in a container on any cloud platform. | > You can swap out the OpenAI endpoint for Hugging Face, Anthropic, Cohere, or your own hosted model – only the request/response handling changes. --- ## 1. Front‑end (HTML + JavaScript) ```html Chatbot Demo

Chatbot Demo

``` **What it does** * Sends a POST to `/api/chat` with the user message. * Expects the back‑end to respond with **Server‑Sent Events (SSE)** streaming JSON objects: `{"content":"…"}` * Each chunk is appended in real time, giving a “typing” feel. --- ## 2. Back‑end – Flask + OpenAI ```python # app.py import os, json, openai from flask import Flask, request, Response, stream_with_context app = Flask(__name__) # --------------------------------------------------------------- # Configure the LLM provider (OpenAI example) openai.api_key = os.getenv("OPENAI_API_KEY") MODEL_NAME = os.getenv("LLM_MODEL", "gpt-4o-mini") # or gpt-3.5-turbo TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7")) # --------------------------------------------------------------- def stream_chat(user_message: str): """ Yields SSE lines containing partial responses from the LLM. """ try: response = openai.ChatCompletion.create( model=MODEL_NAME, temperature=TEMPERATURE, messages=[{"role":"user","content":user_message}], stream=True ) for chunk in response: delta = chunk['choices'][0]['delta'] if 'content' in delta: # Each line is a JSON object prefixed with "data: " yield f"data: {json.dumps({'content': delta['content']})}\n\n" except Exception as e: error_msg = f"Error: {str(e)}" yield f"data: {json.dumps({'content': error_msg})}\n\n" # --------------------------------------------------------------- @app.route('/api/chat', methods=['POST']) def chat(): data = request.get_json(force=True) msg = data.get('message', '') if not msg: return {"error":"Missing message"}, 400 # Return a streaming response return Response(stream_with_context(stream_chat(msg)), mimetype='text/event-stream', headers={'Cache-Control':'no-cache'}) # --------------------------------------------------------------- if __name__ == "__main__": app.run(host="0.0.0.0", port=8000, threaded=True) ``` ### Environment variables | Variable | Default / Purpose | |----------|-------------------| | `OPENAI_API_KEY` | Your OpenAI key (required) | | `LLM_MODEL` | e.g., `gpt-4o-mini`, `gpt-3.5-turbo` | | `TEMPERATURE` | 0–1, controls randomness | > **Tip:** If you want to use a local model or another provider, replace the `openai.ChatCompletion.create(...)` block with the appropriate SDK call. --- ## 3. Docker Setup (Optional but Recommended) ```dockerfile # Dockerfile FROM python:3.12-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 8000 CMD ["python", "app.py"] ``` `requirements.txt` ``` Flask==2.3.* openai>=1.5 ``` `docker-compose.yml` ```yaml version: '3.8' services: chatbot: build: . environment: - OPENAI_API_KEY=${OPENAI_API_KEY} - LLM_MODEL=gpt-4o-mini - TEMPERATURE=0.7 ports: - "8000:8000" ``` > Run locally: ```bash docker compose up --build ``` Open `http://localhost:8000` and you’ll see the chat UI. --- ## 4. How It Works (Behind the Scenes) 1. **User types** → JavaScript POSTs to `/api/chat`. 2. Flask receives JSON, calls the LLM API with `stream=True`. 3. The OpenAI client yields tokens as they’re generated; we wrap each in a SSE line (`data: ...`). 4. Browser reads the stream and appends text chunks to the chat window, giving instant feedback. 5. The entire flow is stateless – no session persistence needed unless you want to maintain conversation context. --- ## 5. Scaling & Enhancements | Feature | How to add | |---------|------------| | **Persist conversation** | Store the list of messages in a database (PostgreSQL, Redis). Pre‑pend them when calling the LLM (`messages=[{"role":"system","content":"You are a helpful assistant."}] + chat_history`). | | **Rate limiting** | Wrap Flask endpoint with `flask_limiter`. | | **Multiple providers** | Abstract the call to a function that chooses between OpenAI, Cohere, or local `llama.cpp` based on env vars. | | **WebSocket streaming** | Replace SSE with WebSockets for lower latency and bidirectional flow. | | **Authentication** | Add JWT/Basic auth so only logged‑in users can chat. | | **Frontend polish** | Use a component library (Bootstrap, Tailwind) or framework (React/Vue). | --- ## 6. Quick Test ```bash # Start the server python app.py # or docker compose up # In another terminal: curl demo curl -X POST http://localhost:8000/api/chat \ -H "Content-Type: application/json" \ -d '{"message":"Hello world"}' | head ``` You should see lines like: ``` data: {"content":"Hi there! How can I help you today?"} ``` --- ## 7. Summary * **Front‑end** – simple, responsive chat UI that streams LLM output in real time. * **Back‑end** – lightweight Flask API that proxies to an LLM provider and streams responses via SSE. * **Docker** – one‑liner to package everything for local or cloud deployment. Drop the files into a folder, run `docker compose up`, and you have a fully functional chatbot ready to embed in any website. Happy coding!