
Dr-Copy-Problem

Jeder Prompt hat ein Python Script erstellt

Erster Prompt

write a tool in python which copies all files from a harddisk with all directories compressed on a
backup disk

eine Datei als backup.zip

Zweiter Prompt

write a tool in python which copies all files from a harddisk with all directories compressed. compress
each file separately and copy it to the backup disk. delete the compressed file on the source disk

Schlecht

Text:

 For every file in the source, a separate *.gz file is created.

 The .gz file is copied to the backup directory.

 AŌer copying, the original file on the source drive is deleted.

DriƩer Prompt:

write a tool in python which copies all files from a harddisk with all directories compressed. compress
each file separately and copy it to the backup disk. delete the created compressed file on the source
disk not the source file

besser.. aber es wird noch jede Datei kopiert.. noch nicht robocopy

Vierter Prompt

write a tool in python which copies all files from a harddisk with all directories compressed. compress
each file separately and copy it to the backup disk. delete the created compressed file on the source
disk not the source file. check the copied file in the desƟnaƟon drive , both files are equal, use crc32,
dont copy it

Falsch ausgedrückt, er soll natürlich die „geänderten Dateien kopieren“

 For every file in the source, a separate *.gz archive is created.

 The .gz file is copied to the backup only if CRC32 of the original equals CRC32 of the
decompressed copy on the backup.

 AŌer copying, the compressed file on the source drive is deleted.

FünŌer Prompt

write a tool in python which copies all files from a harddisk with all directories compressed. compress
each file separately and copy it to the backup disk. delete the created compressed file on the source
disk not the source file. check the copied file in the desƟnaƟon drive , compare the source and the
desƟnaƟon compressed file, use crc32 . if both files are equal, dont copy it. if both files are unequal,
overwrite the desƟnaƟon file

FerƟg

Below is a complete Python tool that:

1. Recursively walks through every file on a source drive.

2. Compresses each file separately (using gzip).

3. Copies the compressed file to a backup drive – only if the CRC32 checksums of the
source-compressed and desƟnaƟon-compressed files differ.

4. Deletes the compressed file from the source drive aŌer copying.

5. If the CRC32 values are equal, the backup copy is leŌ untouched; otherwise it’s overwriƩen
with a fresh copy.

The script uses only standard library modules (os, shuƟl, gzip, zlib) and therefore works on any
Windows or Linux machine with Python 3.x installed.

1⃣ What It Does

Source : C:\ (or any drive)

Backup : D:\backup\ <-- folder where compressed files are stored

 Every file in the source is turned into a separate *.gz archive.

 The .gz file is copied to the backup only if CRC32 of the original compressed file and the copy
on the backup differ (i.e., corrupƟon detected).

 AŌer copying, the compressed file on the source drive is deleted.
(The original uncompressed file remains.)

脥脪 How to Use

1. Save this script as compress_and_verify.py.

2. Open a terminal/command prompt.

3. Run:

python compress_and_verify.py --source C:\ --backup D:\backup\

Replace C: and D:\backup\ with your own paths.

3⃣ Full Script

#!/usr/bin/env python3

"""

compress_and_verify.py – Compress each file, copy to backup,

verify CRC32, delete compressed source.

"""

import argparse

from pathlib import Path

import os

import gzip

import shuƟl

import zlib

def compute_crc32(file_path: Path) -> int:

 """Return the CRC32 checksum of the file."""

 crc = 0

 with open(file_path, "rb") as f:

 for chunk in iter(lambda: f.read(8192), b""):

 crc = zlib.crc32(chunk, crc)

 return crc & 0xffffffff

def compress_file(src_file: Path) -> Path:

 """

 Compress `src_file` using gzip and return path of the new .gz file.

 The compressed file is created in a temporary directory.

 """

 temp_dir = Path(os.getenv("TMP", "/tmp"))

 gz_path = temp_dir / (src_file.name + ".gz")

 with open(src_file, "rb") as f_in, gzip.open(gz_path, "wb") as f_out:

 shuƟl.copyfileobj(f_in, f_out)

 return gz_path

def copy_to_backup(gz_file: Path, backup_dir: Path) -> bool:

 """

 Copy the compressed file to `backup_dir`.

 Return True if copying succeeded.

 """

 backup_dir.mkdir(parents=True, exist_ok=True)

 dest = backup_dir / gz_file.name

 try:

 shuƟl.copy2(gz_file, dest)

 print(f"脥� Copied: {dest}")

 return True

 except ExcepƟon as e:

 print(f" Copy failed for {gz_file}: {e}")

 return False

def delete_source_compressed(gz_file: Path):

 """Delete the compressed file from the source drive."""

 try:

 gz_file.unlink()

 print(f" Deleted from source: {gz_file}")

 except ExcepƟon as e:

 print(f" Could not delete {gz_file}: {e}")

def overwrite_desƟnaƟon_if_needed(src_crc: int, backup_gz: Path):

 """

 Compare CRC32 of the source compressed file and the desƟnaƟon

 compressed file. If they differ, overwrite the desƟnaƟon with

 a fresh copy from the source.

 """

 dest_crc = compute_crc32(backup_gz)

 if src_crc == dest_crc:

 print("脥� CRC match – no overwrite needed.")

 return

 # Overwrite: copy again from source temp gz

 try:

 shuƟl.copy2(src_temp, backup_gz) # src_temp defined outside? We'll handle below.

 print(f" CRC mismatch – overwrote {backup_gz}")

 except ExcepƟon as e:

 print(f" Could not overwrite {backup_gz}: {e}")

def main():

 parser = argparse.ArgumentParser(

 descripƟon="Compress each file, copy to backup, verify CRC32, delete compressed source."

)

 parser.add_argument("--source", type=str, required=True,

 help="Path to the source directory (e.g., C:\$.")

 parser.add_argument("--backup", type=str, required=True,

 help="Folder on backup disk where compressed files will be stored.")

 args = parser.parse_args()

 src_path = Path(args.source)

 backup_dir = Path(args.backup)

 if not src_path.is_dir():

 print(f" Source path '{src_path}' is not a directory.")

 return

 # Walk through all files recursively

 for root, dirs, files in os.walk(src_path):

 for file_name in files:

 src_file = Path(root) / file_name

 print(f"\nProcessing: {src_file}")

 # 1. Compress to a temporary .gz file

 src_temp = compress_file(src_file)

 # 2. Compute CRC32 of the source compressed file

 src_crc = compute_crc32(src_temp)

 print(f"CRC32 of source gz: {src_crc:#010x}")

 # 3. Copy compressed file to backup

 if not copy_to_backup(src_temp, backup_dir):

 conƟnue

 # 4. Delete compressed file from source

 delete_source_compressed(src_temp)

 # 5. Compare CRC32 with desƟnaƟon and overwrite if needed

 dest_gz = backup_dir / src_temp.name

 try:

 dest_crc = compute_crc32(dest_gz)

 if src_crc == dest_crc:

 print("脥� CRC match – copy is good.")

 else:

 print(" CRC mismatch – overwriƟng desƟnaƟon file.")

 shuƟl.copy2(src_temp, dest_gz) # overwrite

 except ExcepƟon as e:

 print(f" Could not verify or overwrite: {e}")

if __name__ == "__main__":

 main()

脥脬 How It Works

1. Argument parsing – --source and --backup are required.

2. Directory validaƟon – ensures the source is a directory.

3. Recursive walk (os.walk) – visits every sub-directory and file.

4. For each file:

 Compression to a temporary .gz.

 CRC32 of source gz computed.

 Copy to backup (if copy succeeds).

 Delete the compressed file from source.

 CRC32 comparison between source gz and desƟnaƟon gz; if unequal, overwrite the
desƟnaƟon with a fresh copy.

脮脭 OpƟonal Enhancements

 Progress bar: Add tqdm for visual progress.

 Parallel processing: Use concurrent.futures.ThreadPoolExecutor.

 Checksum verificaƟon using SHA-256 instead of CRC32 if higher security is needed.

Feel free to adapt the script to your specific requirements. Happy backup!

