
Thought for 425 minutes 51 seconds 
 
Got it, let's tackle this: the user wants a C implementation of TSP for 3000 nodes. First, I need 
to remember that TSP is NP-hard, so exact solutions are impossible for 3000 nodes—we need 
a heuristic. The previous answer used Simulated Annealing (SA) for 50 nodes, but 3000 
nodes require a more efficient heuristic because SA with random swaps might be too slow or 
not scalable enough. 
 
Wait, what's the most scalable TSP heuristic? For large datasets (like 3000 nodes), Lin-
Kernighan (LK) is a good choice—it's a local search heuristic that uses 2-opt moves and 
extends them to k-opt, which is much faster than SA for big N. Alternatively, Concorde is the 
state-of-the-art exact solver, but it's not open-source for commercial use and very complex. 
Since the user asked for C code, we need something practical: maybe a 2-opt heuristic as a 
base, since it's simple to implement and works well for large N if optimized. 
 
First, 3000 nodes: distance matrix would be 3000x3000 = 9 million entries—manageable in 
memory (each double is 8 bytes, so 72 MB—no problem). But wait, Euclidean TSP? The user 
didn't specify, but assuming it's metric TSP (satisfies triangle inequality), which most real-
world problems do. So we can compute distances on the fly instead of storing a full matrix to 
save memory? Wait no—3000x3000 is 9 million doubles, which is 72 MB—totally 
acceptable. But if nodes are geographic points (lat/lon), we can compute distance when 
needed, but for simplicity, let's assume we have coordinates and precompute the matrix, or 
compute on the fly. 
 
Wait, 3000 nodes: generating random coordinates is easy. Let's use Euclidean distance again. 
Now, 2-opt algorithm steps: 
 
Start with an initial path (e.g., random permutation or sorted order—sorted is better for 2-opt 
as it reduces initial distance). 
For each pair of edges (i, i+1) and (j, j+1) where j > i+1: a. Compute the change in distance if 
we reverse the subpath from i+1 to j (the 2-opt move). b. If the change is negative (improves 
the path), apply the move and restart the search (since the move changes the path structure). 
Repeat until no more improving moves are found. 
Why 2-opt? It's O(n²) per iteration, but with early termination when no improvements, it's fast 
enough for 3000 nodes if optimized. Also, 2-opt is easy to implement in C. 
 
Wait, but O(n²) for n=3000 is 9 million operations—very manageable. Even 10 iterations 
would be 90 million operations, which is nothing for a modern CPU. 
 
Now, initial path: sorted order (by x or y coordinate) is better than random because it reduces 
the number of initial crossings, which 2-opt fixes. 
 
Implementing 2-opt in C: 
 
First, represent the path as an array of integers (indices of cities). For n=3000, an int array of 
size 3000 is fine (12 KB). 
 
Distance calculation: if we have city coordinates (x, y), compute Euclidean distance between i 
and j as sqrt((x_i - x_j)² + (y_i - y_j)²). To save memory, don't store the full distance matrix—
compute distances on the fly when needed. Because 3000x3000 is manageable, but computing 
on the fly saves 72 MB and is faster in practice (cache efficiency—since we don't have to 



store a big matrix). Wait, let's see: for each 2-opt move, we need 4 distances: d(i,i+1), d(j,j+1) 
(removed edges), d(i,j), d(i+1,j+1) (added edges). So per move, 4 distance computations—no 
need to store the matrix. That's better for memory and cache, especially for large n. 
 
Yes! For metric TSP, computing distances on the fly is better than storing a matrix for 
n>1000 or so, because of cache locality. So let's define a City struct with x and y, then a 
function to compute distance between two cities. 
 
Steps for 2-opt: 
 
Initialize path as a permutation of 0..n-1 (e.g., sorted by x). Compute initial total distance. 
 
Then, loop: 
bool improved = false; 
for (i from 0 to n-2): 
for (j from i+1 to n-1): 
if j == i+1: continue (adjacent edges, reversing does nothing) 
compute delta = [d(path[i], path[j]) + d(path[i+1], path[j+1])] - [d(path[i], path[i+1]) + 
d(path[j], path[j+1])] 
if delta < 0: (improves distance) 
reverse the subpath from i+1 to j in the path 
total_distance += delta 
improved = true 
break out of j loop and restart i loop (since reversing changes the path, we need to check from 
the start again) 
if not improved: break 
 
Wait, but the standard 2-opt implementation uses a double loop with early termination when 
an improvement is found. Also, note that the path is cyclic—so after n-1 comes 0. But in 
code, we can handle the wrap-around by using modulo, or adjust the loops to include the 
wrap-around edge (e.g., i = n-1, j=0). Alternatively, some implementations duplicate the path 
array (path[n] = path[0], path[n+1] = path[1]) to avoid modulo, but for 3000 nodes, it's easier 
to compute (i+1) % n and (j+1) % n. 
 
Wait, let's clarify: the path is a cycle, so edge from path[k] to path[(k+1)%n]. For 2-opt, we 
consider all pairs of non-consecutive edges (a,b) and (c,d) that cross, where a→b and c→d are 
consecutive in the path. Reversing the subpath from b to c fixes the crossing. The delta 
calculation is: 
 
Original edges: (i, i+1) and (j, j+1). After reversing i+1 to j: new edges are (i, j) and (i+1, 
j+1). So delta = [distance(i,j) + distance(i+1,j+1)] - [distance(i,i+1) + distance(j,j+1)]. If delta 
< 0, total distance decreases—good. 
 
Now, code structure in C: 
 
Define a City struct with x and y (doubles). 
Generate 3000 random cities (or read from file—let's generate random for example). 
Initialize path as an array of integers (0 to 2999), sorted by x coordinate (to get a reasonable 
initial path). 
Compute initial total distance. 
Apply 2-opt until no more improvements. 



Print the result (total distance, maybe first few cities). 
Optimizations for 3000 nodes: 
 
Early Termination: As soon as an improving move is found, apply it and restart the outer 
loop—this is crucial because it avoids checking all pairs once a good improvement is made. 
Avoid Adjacent Pairs: j starts from i+2 (not i+1) because reversing adjacent edges does 
nothing (swap path[i+1] and path[j] where j=i+1 is just swapping two elements, which doesn't 
change the path). 
Compute Distances Efficiently: Use inline functions or macros for distance calculation to 
avoid function call overhead. 
Use Integers for Path: Since city indices are integers, use an int array—fast and small. 
Potential issues: 
 
Random Seed: For reproducibility, seed the random number generator with a fixed value or 
time(0). 
Data Types: Use double for coordinates and distances to avoid precision errors. Total distance 
can be a double (since 3000 edges of ~1e5 units each is 3e8, which fits in a double easily). 
Performance: For 3000 nodes, the outer loop (i) runs up to 2999 times, inner loop (j) up to 
2999 times—but with early termination, it's much faster. On a modern CPU, this should run in 
under a second (maybe a few seconds), depending on optimizations. 
Now, let's draft the code: 
 
First, include headers: 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
#include <string.h> 
 
Define City struct: 
 
typedef struct { 
double x, y; 
} City; 
 
Function to compute distance between two cities (inline for speed): 
 
static inline double dist(const City a, const City b) { 
double dx = a->x - b->x; 
double dy = a->y - b->y; 
return sqrt(dxdx + dydy); 
} 
 
Function to generate random cities (0-1000 range for x and y): 
 
void generate_cities(City *cities, int n) { 
for (int i = 0; i < n; ++i) { 
cities[i].x = rand() / (double)RAND_MAX * 1000.0; 
cities[i].y = rand() / (double)RAND_MAX * 1000.0; 
} 



} 
 
Function to sort path by city x coordinate (initial path): 
 
void sort_path_by_x(int *path, const City *cities, int n) { 
// Simple bubble sort for small overhead—alternatively use qsort 
for (int i = 0; i < n-1; ++i) { 
for (int j = 0; j < n-i-1; ++j) { 
if (cities[path[j]].x > cities[path[j+1]].x) { 
int temp = path[j]; 
path[j] = path[j+1]; 
path[j+1] = temp; 
} 
} 
} 
} 
 
Wait, but bubble sort is O(n²)—for n=3000, that's 9 million operations—acceptable, but qsort 
is faster. Let's use qsort with a comparator: 
 
int compare_x(const void *a, const void *b, const City *cities) { 
int i = *(const int *)a; 
int j = *(const int *)b; 
return (cities[i].x > cities[j].x) ? 1 : -1; 
} 
 
Wait, but qsort's comparator takes two arguments—so we need to pass cities as a global 
variable or use a wrapper. For simplicity, make cities a global variable (or use a static array in 
the function). Alternatively, since in C we can't have a comparator with extra args easily, let's 
make cities global for this example (easier than using dynamic allocation or functors): 
 
// Global variables for convenience in qsort comparator 
static City *global_cities; 
 
int compare_x(const void *a, const void *b) { 
int i = *(const int *)a; 
int j = *(const int *)b; 
return (global_cities[i].x > global_cities[j].x) ? 1 : -1; 
} 
 
Then, sort_path_by_x becomes: 
 
void sort_path_by_x(int *path, int n) { 
global_cities = path_to_cities? Wait no—wait path is an array of indices into cities. So before 
calling qsort, set global_cities to the cities array: 
 
Wait, let's correct that: when we want to sort the path (array of indices) by the x-coordinate of 
the corresponding city, we need to pass the cities array to the comparator. Since C's qsort 
doesn't support that, making cities a global variable is a quick fix for an example. So in 
main(), after generating cities, we set global_cities = cities, then call qsort on path: 
 



qsort(path, n, sizeof(int), compare_x); 
 
Yes—better than bubble sort. 
 
Now, 2-opt algorithm: 
 
double two_opt(int *path, const City *cities, int n) { 
double total_dist = 0.0; 
// First compute initial total distance (cyclic) 
for (int i = 0; i < n; ++i) { 
int j = (i + 1) % n; 
total_dist += dist(&cities[path[i]], &cities[path[j]]); 
} 
 
int improved; 
do { 
    improved = 0; 
    for (int i = 0; i < n && !improved; ++i) { 
        for (int j = i + 2; j < n && !improved; ++j) { // Skip adjacent j=i+1 
            int i_next = (i + 1) % n; 
            int j_next = (j + 1) % n; 
 
            double d_ij = dist(&cities[path[i]], &cities[path[j]]); 
            double d_i_next_j_next = dist(&cities[path[i_next]], &cities[path[j_next]]); 
            double d_i_i_next = dist(&cities[path[i]], &cities[path[i_next]]); 
            double d_j_j_next = dist(&cities[path[j]], &cities[path[j_next]]); 
 
            double delta = (d_ij + d_i_next_j_next) - (d_i_i_next + d_j_j_next); 
            if (delta < 0) { // Improvement found 
                // Reverse subpath from i+1 to j 
                for (int k = 0; k <= (j - i_next) / 2; ++k) { 
                    int swap_a = (i + 1 + k) % n; 
                    int swap_b = (j - k) % n; 
                    // Wait—since we're dealing with a cyclic path, but in practice, since j > i+1 and 
we start with a sorted path, (i+1) to j is a contiguous subarray? No—wait no! Because the path 
is cyclic, but when we do 2-opt, we usually consider non-cyclic paths first, then handle the 
wrap-around. Wait, no—the standard 2-opt implementation for cyclic paths treats the array as 
linear with the first element appended at the end (so path[n] = path[0], path[n+1] = path[1]), 
which avoids modulo operations. Oh right—for n=3000, we can make a temporary array of 
size n+2, where path_temp[k] = path[k % n], so that i_next = i+1 and j_next = j+1 are always 
valid (no modulo). That's a better approach to avoid confusion with cyclic indices. 
 
                    // Let's adjust: create a temporary array to handle the cycle as linear 
                    int *temp_path = malloc(n * sizeof(int)); 
                    memcpy(temp_path, path, n * sizeof(int)); 
                    temp_path[n] = temp_path[0]; // Append first element to end for cyclic handling 
                    temp_path[n+1] = temp_path[1]; 
 
                    // Reverse from i+1 to j (using temp_path) 
                    int a = i + 1; 
                    int b = j; 



                    while (a < b) { 
                        int swap_val = temp_path[a]; 
                        temp_path[a] = temp_path[b]; 
                        temp_path[b] = swap_val; 
                        a++; 
                        b--; 
                    } 
 
                    // Copy back to path (excluding the appended elements) 
                    memcpy(path, temp_path, n * sizeof(int)); 
                    free(temp_path); 
 
                    total_dist += delta; 
                    improved = 1; 
                    break; // Break j loop to restart i loop 
                } 
            } 
        } 
    } 
} while (improved); 
 
return total_dist; 
} 
 
Wait, no—my mistake earlier: the subpath from i+1 to j is linear in the path array only if we 
don't wrap around. But since we start with a sorted path and do 2-opt moves that fix crossings, 
the path remains mostly linear, so (i+1) to j is a contiguous subarray—so no need for modulo 
in the reverse loop. Let's correct the reverse part: when we have i and j (j > i+1), reversing 
from i+1 to j is just swapping elements at positions i+1 + k and j - k for k from 0 to (j - i - 
1)/2. For example, i=0, j=5: reverse positions 1-5 → swap 1&5, 2&4, leave 3. That's correct 
for a linear array, but since our path is cyclic, does this handle the wrap-around? No—so to 
properly handle all possible pairs (including i near n-1 and j near 0), we need to either: 
 
Use the temporary array with appended elements (path[n] = path[0], path[n+1] = path[1]) so 
that all i and j are in 0..n-1, and i_next = i+1, j_next = j+1 are valid (even if i = n-1, i_next = n 
which is path[0]). 
OR 
 
Split the reverse into two parts if the subpath wraps around (e.g., i=2998, j=2: reverse from 
2999 to 2999 and 0 to 1—but that's more complex). 
The first option is easier for an example—so let's adjust the code to use a temporary array 
with appended elements to avoid modulo in the distance calculation and reverse step. Wait, 
but in the delta calculation, we already have i_next = (i+1) % n and j_next = (j+1) % n—so 
that's correct for cyclic edges. For the reverse step, if we use the temporary array with path[n] 
= path[0], then when i is n-1, i+1 = n which is path[0], but in our 2-opt loops, i runs from 0 to 
n-2 (since j starts at i+2 and goes up to n-1). Wait no—let's redefine the loops to run i from 0 
to n-1 and j from i+1 to n-1, but handle the wrap-around edge (i = n-1, j=0) as a special case? 
No—better to use the standard approach where we duplicate the path array to avoid modulo: 
 



For example, create an array path_doubled of size 2n, where path_doubled[k] = path[k % n]. 
Then, for any i in 0..n-1, j in i+1..n-1, the subpath from i to j is linear in path_doubled (no 
wrap-around). This way, reversing i+1 to j is just a standard linear reverse. 
 
But let's simplify for the example: since we start with a sorted path (non-cyclic), most 2-opt 
moves will not involve wrapping around the end of the array, so we can skip handling the 
wrap-around edge for now—though in practice, it's needed for correctness. For the sake of an 
example that works for 3000 nodes, let's proceed with the linear reverse and note that for full 
cyclic correctness, the path should be doubled. 
 
Wait another mistake: in the initial total distance calculation, we have to include the edge 
from last city back to first—correct (using (i+1)%n). In the 2-opt delta calculation, we also 
include (j+1)%n—correct. So the only part missing is handling wrap-around in the reverse 
step when i is near n-1 and j is near 0. To fix that, let's adjust the path to be doubled: 
 
In the two_opt function: 
 
int *path_doubled = malloc(2 * n * sizeof(int)); 
for (int k = 0; k < 2 * n; ++k) { 
path_doubled[k] = path[k % n]; 
} 
 
Then, in the reverse loop: 
 
a = i + 1; 
b = j; 
while (a < b) { 
int temp = path_doubled[a]; 
path_doubled[a] = path_doubled[b]; 
path_doubled[b] = temp; 
a++; 
b--; 
} 
 
// Copy back the first n elements to path 
memcpy(path, path_doubled, n * sizeof(int)); 
free(path_doubled); 
 
This way, even if i is n-1 and j is 0 (but in our loops j starts at i+2, so j can't be 0 if i is n-1—
since i runs from 0 to n-2). Wait no: if n=3000, i can be 2998, j can be 2999 (but j starts at 
i+2=3000 which is >=n=3000, so the inner loop doesn't run for i> n-3). So actually, with j 
starting at i+2 and running up to n-1, we never have j wrapping around to 0—so the linear 
reverse is safe. Phew! That's a relief. 
 
Now, main function: 
 
int main() { 
const int n = 3000; 
City *cities = malloc(n * sizeof(City)); 
int *path = malloc(n * sizeof(int)); 
 



// Initialize path with indices 0..n-1 
for (int i = 0; i < n; ++i) { 
    path[i] = i; 
} 
 
// Generate random cities (seed with time for variability) 
srand(time(NULL)); 
generate_cities(cities, n); 
 
// Set global variable for qsort comparator 
global_cities = cities; 
// Sort path by x-coordinate to get initial path 
qsort(path, n, sizeof(int), compare_x); 
 
// Run 2-opt heuristic 
clock_t start = clock(); 
double total_distance = two_opt(path, cities, n); 
clock_t end = clock(); 
 
// Print results 
printf("TSP Solution for %d Nodes:\n", n); 
printf("Total Distance: %.2f\n", total_distance); 
printf("Time Elapsed: %.2fs\n", (double)(end - start) / CLOCKS_PER_SEC); 
printf("First 10 Cities in Path: "); 
for (int i = 0; i < 10; ++i) { 
    printf("%d ", path[i]); 
} 
printf("\n"); 
 
// Cleanup 
free(cities); 
free(path); 
 
return 0; 
} 
 
Wait, but in the two_opt function, we have a mistake: when we reverse the subpath from i+1 
to j, we are modifying the path array directly inside the loop—but in C, if we pass path as an 
int*, then modifications are done in place, which is correct. Also, the initial total distance 
calculation is correct (cyclic). 
 
Another optimization: precompute all distances? No—for 3000 nodes, computing on the fly is 
faster because of cache—storing a 3000x3000 matrix would take 72 MB, but accessing 
random elements in that matrix is slower than computing distance from coordinates (since 
coordinates are stored in a contiguous array—better cache locality). 
 
Testing for possible errors: 
 
Global Variable: global_cities is static—yes, so it's only visible in the file. 
Memory Allocation: Using malloc and free correctly—yes. 



Qsort Comparator: Returns 1 or -1 based on x-coordinate—correct (qsort expects negative for 
less than, positive for greater than). 
2-opt Reverse Loop: Correctly reverses i+1 to j—yes (swap a and b moving towards each 
other). 
Delta Calculation: Correct (new edges minus old edges)—yes. 
Potential issues with the code: 
 
Performance of Qsort Comparator: Using a global variable is acceptable for an example, but 
in real code, you'd use a threaded comparator or pass the cities array as a parameter (but C 
doesn't support that natively—so global is okay here). 
Initial Path Quality: Sorting by x-coordinate gives a reasonable initial path, but better initial 
paths (like nearest neighbor) would converge faster—but for an example, sorted is fine. 
Wrap-around Handling: As discussed earlier, the code doesn't handle wrap-around in the 
reverse step for i near n-1 and j near 0—but since our loops prevent that (j starts at i+2 and 
runs up to n-1), it's not a problem. To fully handle all cases, we'd need to adjust the loops to 
include j = (i + k) % n for k > 2, but that's more complex. 
Now, let's compile and test—though since I can't run code here, I'll assume it works. The final 
code should generate 3000 random cities, sort the initial path by x-coordinate, apply 2-opt 
until no more improvements, and print the total distance and time. 
 
Another thing: in the two_opt function, the initial total distance calculation includes all cyclic 
edges—correct. The delta calculation correctly accounts for replacing two edges with two 
others—correct. 
 
Final touches: add inline to the dist function for speed (since it's called many times), use const 
where possible (e.g., const City *a in dist function—yes). 
 
Yes—this should be a correct C example for TSP with 3000 nodes using the 2-opt heuristic. 
 
To solve this problem, we need to find an approximate solution to the Traveling Salesman 
Problem (TSP) for 3000 nodes using the 2-opt heuristic. The 2-opt algorithm is a local search 
optimization technique that improves a given route by reversing segments of the path to 
reduce the total distance traveled. 
 
Approach 
Generate Random Cities: Create 3000 random cities with coordinates in a range (0 to 1000) 
for x and y values. 
Initial Path Construction: Start with an initial path sorted by the x-coordinate of the cities to 
ensure a reasonable starting route. 
2-opt Heuristic: Iteratively improve the path by reversing segments of the route that result in a 
shorter total distance. Specifically, for each pair of edges (i, i+1) and (j, j+1), check if 
reversing the segment from i+1 to j reduces the total distance. If it does, update the path and 
continue until no more improvements can be made. 


